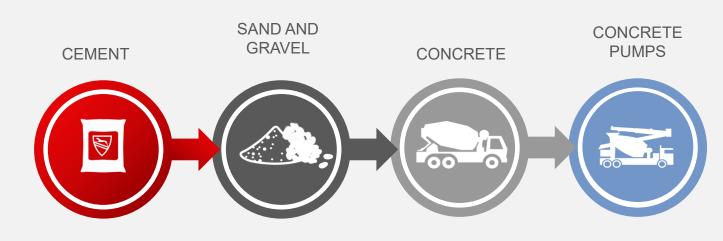


PARTICIPATION OF SCHWENK GROUP IN CCUS VALUE CHAIN

Evita Gosa | SCHWENK 13 October 2022

SCHWENK BUILDING MATERIALS GROUP

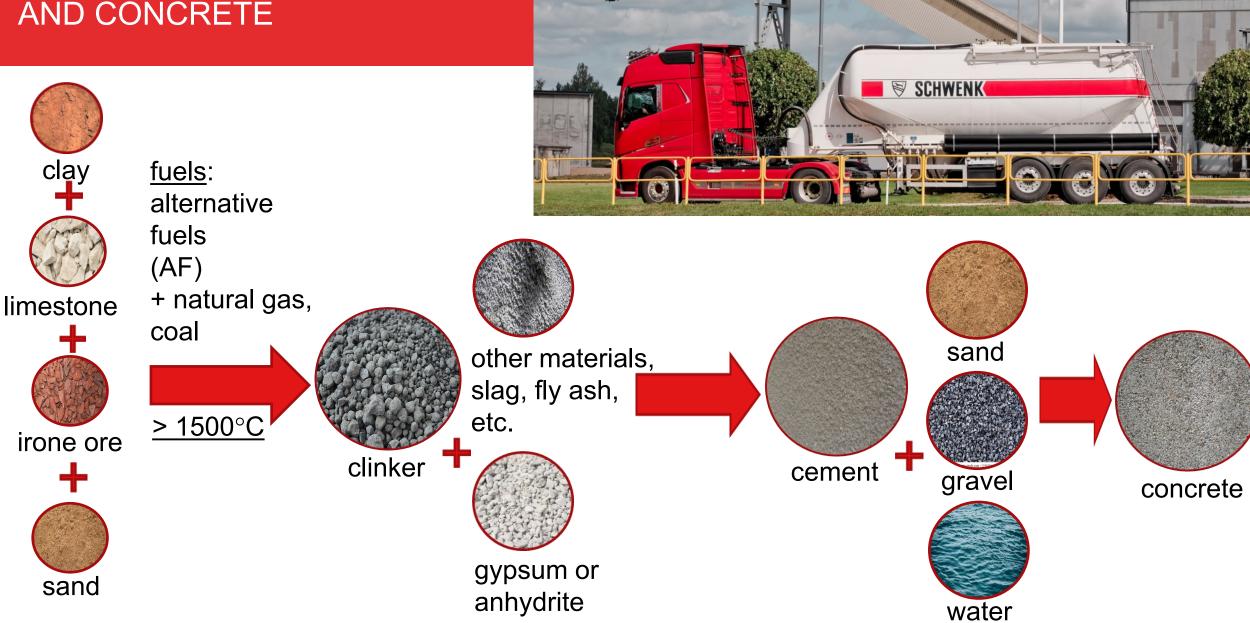
Founded by Eduard Schwenk in 1847, Ulm, Germany


One of the oldest family-owned building materials producers

Employees worldwide ~ 4000

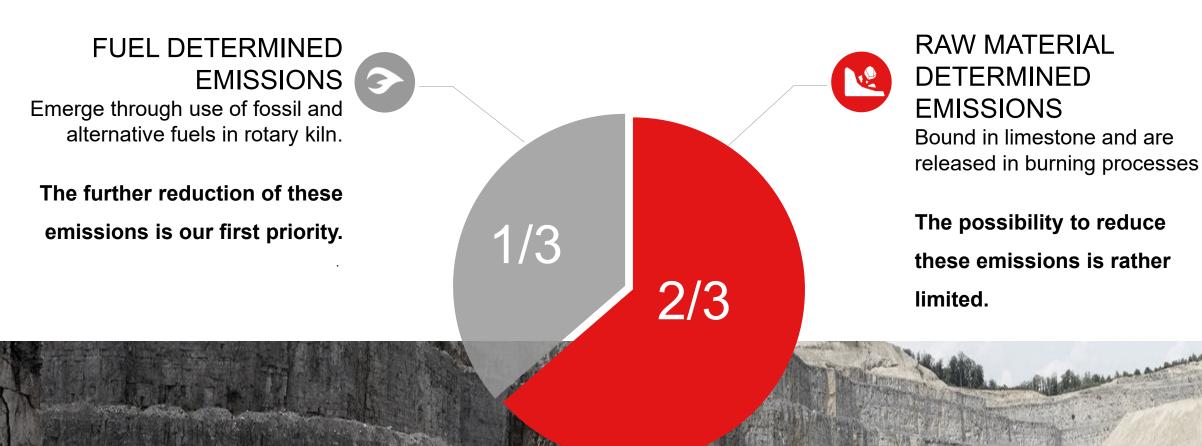
Leader in sustainability and innovation

Since 2019 – in Northern Europe


SCHWENK NORTHERN EUROPE

BROCĒNI CEMENT PLANT - ONE OF THE MOST MODERN AND GREENEST IN EUROPE (AMONG TOP 3% IN CO2/T CLINKER)

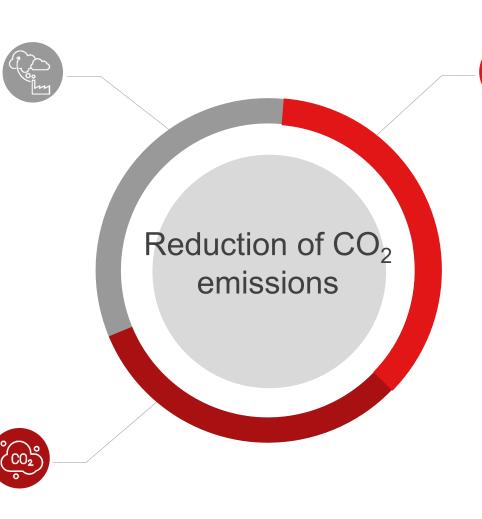
PRODUCTION OF CEMENT AND CONCRETE


000

OUR ROADMAP TOWARDS CLIMATE NEUTRALITY

EMISSIONS IN CEMENT PRODUCTION

WHERE DOES CO₂ ORIGINATE IN OUR PRODUCTION PROCESS?



OUR GOALS FOR REDUCING CO₂ EMISSIONS AT THE BROCENI PLANT (AKMENE PLANT)

GOAL 1 Reduce the average CO_2 emission factor of the clinker production by 50 kg/t until 2025 for saving 61K t CO_2 annually.

GOAL 3

By $2030 - \text{the first } \text{CO}_2$ neutral cement plant in the group. Until 2035 - also in the Baltics.

Ø

Reduce the average clinker factor (% clinker in cement) until 2025 by 10% to the level that would save 122K t of clinker and thus - 76K t CO₂ annually.

CCSU VALUE CHAIN: SCHWENK POSITION CC IS RESEARCHED BOTH IN LATVIA AND AT THE GROUP LEVEL

CC: SCHWENK Broceni cement plant completed participation in Genesis

- A Horizon 2020 project: <u>https://www.genesis-h2020.eu</u>
- Containerized «proof of concept» plant for membrane-based CO₂ separation at industrial conditions
- Despite pandemic-related delays, successful CO₂ separation from post-kiln gas flow (though not to e.g. 90% purity yet)
- · Process now to be made more energy efficient and upscaled partners reviewing possibilities
- The project may be extended; awaiting project partners' suggestions

CC: SCHWENK Mergelstetten oxyfuel process plant project - on track

- 2022: design, permitting, first construction works
- CI4C Cement Innovation for Climate project, research company formed in 2019
 - Four cement producers: Buzzi Unicem, HeidelbergCement, SCHWENK Zement and Vicat
 - ThyssenKrupp Industrial Solutions' Polysius division is the technical partner
 - SCHWENK Mergelstetten plant selected as the project site
- Less than 10% of Broceni plant's annual capacity: industrial scale, but not a full plant
- Learnings to be used for decision if and how to build a full-scale oxyfuel plant
- If successful, the technology can be copied to the Baltics
- Potentially the least energy-intensive of the CC methods for the cement industry
- Still requires substantial amounts of extra fuel and (renewable) electricity
- Potential synergies with green H₂ production: oxyfuel process can use the resulting O₂

CS: LATVIA'S AND REGIONAL GEOLOGICAL RESOURCES AND REGULATIONS FURTHER INVESTIGATION AND VALIDATION REQUIRED

- CS: Draft Climate Law now includes CCSU provisions
- CS: Contact with geological research specialists to check indicative work plans for further geological research
 - Dobele and North Blidene reservoirs primarily
 - Closest to CEM plant
 - 105 Mt Dobele, 142 Mt North-Blīdene optimistic capacity; also Blīdene with 112 Mt
 - Dobele has last been researched in 2009-2010 for natural gas storage potential assessment
 - But only based on revisiting and logging existing USSR-time wells
 - Prior research of USSR-time wells promising, but the reservoirs need further validation via primary research: both logging of existing wells and expanding the wells network
 - Existing wells may actually be a risk for the future use of a geological structure
 - The aim is to confirm a **road-map with cost indications** to make recommendations to the relevant authorities regarding National Climate and Energy Plan 2021-2030 linked R&D activities and respective funding instruments

Offshore storage

- Also a potential interim solution until the CU industry matures
- In discussion with Klaipėdos Nafta and relevant partners to consider this value chain
- Similar energy-intensity and cost considerations as for CC

CU: SCHWENK POSITION FOCUSED ON CC; SUPPORT CU RESEARCH AND DEPLOYMENT

CU medium term: Processing into synthetic fuels

- Baden-Württemberg federal state and project consortium, including SCHWENK, support a feasibility study
 regarding the production of synthetic kerosene from cement industry carbon emissions
- <u>https://www.schwenk.de/baden-wuerttemberg-foerdert-die-studie-zur-herstellung-und-zum-einsatz-von-synthetischem-kerosin-auf-basis-erneuerbarer-energien/</u>
- Aviation e-kerosene / SAF targets raised by EC's mid-2022 «Fit for 55» package to 2% by 2025, 37% by 2040
- https://www.europarl.europa.eu/news/en/press-room/20220627IPR33913/fit-for-55-transport-meps-set-ambitious-targetsfor-greener-aviation-fuels

• CU short term: Suggestion to also research and expand current uses of CO₂

- Need to check the CO₂ «market» in the Baltics
- «Low-hanging fruit» where first captured CO₂ volumes can be used
 - These may be in semi-industrial scale, e.g. a few thousand t captured per month
 - Some industrial producers already now have excess CO₂ to offer
 - Could serve as first steps to establish the new CO₂ supply chain, separately from traditional production methods
 - Technical questions: purification, testing
 - Transportation and related costs
 - · Verification of captured and utilized amounts, integration into the Emissions Trading System
 - Are there industries where CO₂ use can be quickly started or uspcaled
 - E.g. Broceni cement plant uses CO₂ in the coal grinding and storage facility's fire safety system; needs ~100 t / year
- This could be a market research study
 - Interviews with existing and potential consumer industries
 - Demand estimates
 - Regulatory, transportation, practical hurdles and bottlenecks
- Need to start somewhere before economically viable processing into synthetic fuels becomes standard industrial practice

THANK YOU!

COLLABORATION

RESPONSIBILITY